Home / Documentation / Advanced Usage / Scoring Resolution

Advanced Usage Tutorials 📖

This tutorial is part of a series to help you learn and perform the advanced functions of zentity. You should complete the basic usage tutorials before completing these advanced usage tutorials.

  1. Scoring Resolution ← You are here.
  2. Matcher Parameters
  3. Date Attributes
  4. Payload Attributes

Scoring Resolution

zentity lets you score the matching documents of an entity resolution job. This is a powerful tool for adjudicating the quality of matches, and it enables client-side sorting or filtering of results based on the confidence of the matches.

Let's dive in.

Before you start

You must install Elasticsearch, Kibana, and zentity to complete this tutorial. This tutorial was tested with zentity-1.6.1-elasticsearch-7.10.1.

Quick start

You can use the zentity sandbox which has the required software and data for these tutorials. This will let you skip many of the setup steps.

1. Prepare for the tutorial

1.1 Install the required plugins

Note: Skip this step if you're using the zentity sandbox.

This tutorial uses the phonetic analysis plugin and ICU analysis plugin for Elasticsearch. You will need to stop Elasticsearch, install these plugin, and start Elasticsearch. You can learn more about Elasticsearch plugin management here.

For Linux (in the $ES_HOME directory of a .tar.gz installation):

sudo bin/elasticsearch-plugin install analysis-phonetic
sudo bin/elasticsearch-plugin install analysis-icu

For Windows (in the $ES_HOME directory of a .zip installation):

bin/elasticsearch-plugin.bat install analysis-phonetic
bin/elasticsearch-plugin.bat install analysis-icu

1.2 Open the Kibana Console UI

The Kibana Console UI makes it easy to submit requests to Elasticsearch and read responses.

1.3 Delete any old tutorial indices

Note: Skip this step if you're using the zentity sandbox.

Let's start from scratch. Delete any tutorial indices you might have created from other tutorials.

DELETE zentity_tutorial_4_*

1.4 Create the tutorial index

Note: Skip this step if you're using the zentity sandbox.

Now create the template for this tutorial.

PUT zentity_tutorial_4_multiple_resolver_resolution
{
  "settings": {
    "index": {
      "number_of_shards": 1,
      "number_of_replicas": 0,
      "analysis" : {
        "filter" : {
          "street_suffix_map" : {
            "pattern" : "(st)",
            "type" : "pattern_replace",
            "replacement" : "street"
          },
          "phonetic" : {
            "type" : "phonetic",
            "encoder" : "nysiis"
          },
          "punct_white" : {
            "pattern" : "\\p{Punct}",
            "type" : "pattern_replace",
            "replacement" : " "
          },
          "remove_non_digits" : {
            "pattern" : "[^\\d]",
            "type" : "pattern_replace",
            "replacement" : ""
          }
        },
        "analyzer" : {
          "name_clean" : {
            "filter" : [
              "icu_normalizer",
              "icu_folding",
              "punct_white"
            ],
            "tokenizer" : "standard"
          },
          "name_phonetic" : {
            "filter" : [
              "icu_normalizer",
              "icu_folding",
              "punct_white",
              "phonetic"
            ],
            "tokenizer" : "standard"
          },
          "street_clean" : {
            "filter" : [
              "icu_normalizer",
              "icu_folding",
              "punct_white",
              "trim"
            ],
            "tokenizer" : "keyword"
          },
          "phone_clean" : {
            "filter" : [
              "remove_non_digits"
            ],
            "tokenizer" : "keyword"
          }
        }
      }
    }
  },
  "mappings": {
    "properties": {
      "id": {
        "type": "keyword"
      },
      "first_name": {
        "type": "text",
        "fields": {
          "clean": {
            "type": "text",
            "analyzer": "name_clean"
          },
          "phonetic": {
            "type": "text",
            "analyzer": "name_phonetic"
          }
        }
      },
      "last_name": {
        "type": "text",
        "fields": {
          "clean": {
            "type": "text",
            "analyzer": "name_clean"
          },
          "phonetic": {
            "type": "text",
            "analyzer": "name_phonetic"
          }
        }
      },
      "street": {
        "type": "text",
        "fields": {
          "clean": {
            "type": "text",
            "analyzer": "street_clean"
          }
        }
      },
      "city": {
        "type": "text",
        "fields": {
          "clean": {
            "type": "text",
            "analyzer": "name_clean"
          }
        }
      },
      "state": {
        "type": "text",
        "fields": {
          "keyword": {
            "type": "keyword"
          }
        }
      },
      "phone": {
        "type": "text",
        "fields": {
          "clean": {
            "type": "text",
            "analyzer": "phone_clean"
          }
        }
      },
      "email": {
        "type": "text",
        "fields": {
          "keyword": {
            "type": "keyword"
          }
        }
      }
    }
  }
}

1.5 Load the tutorial data

Note: Skip this step if you're using the zentity sandbox.

Add the tutorial data to the index.

POST _bulk?refresh
{"index": {"_id": "1", "_index": "zentity_tutorial_4_multiple_resolver_resolution"}}
{"city": "Washington", "email": "[email protected]", "first_name": "Allie", "id": "1", "last_name": "Jones", "phone": "202-555-1234", "state": "DC", "street": "123 Main St"}
{"index": {"_id": "2", "_index": "zentity_tutorial_4_multiple_resolver_resolution"}}
{"city": "Washington", "email": "", "first_name": "Alicia", "id": "2", "last_name": "Johnson", "phone": "202-123-4567", "state": "DC", "street": "300 Main St"}
{"index": {"_id": "3", "_index": "zentity_tutorial_4_multiple_resolver_resolution"}}
{"city": "Washington", "email": "", "first_name": "Allie", "id": "3", "last_name": "Jones", "phone": "", "state": "DC", "street": "123 Main St"}
{"index": {"_id": "4", "_index": "zentity_tutorial_4_multiple_resolver_resolution"}}
{"city": "", "email": "", "first_name": "Ally", "id": "4", "last_name": "Joans", "phone": "202-555-1234", "state": "", "street": ""}
{"index": {"_id": "5", "_index": "zentity_tutorial_4_multiple_resolver_resolution"}}
{"city": "Arlington", "email": "[email protected]", "first_name": "Eli", "id": "5", "last_name": "Jonas", "phone": "", "state": "VA", "street": "500 23rd Street"}
{"index": {"_id": "6", "_index": "zentity_tutorial_4_multiple_resolver_resolution"}}
{"city": "Washington", "email": "[email protected]", "first_name": "Allison", "id": "6", "last_name": "Jones", "phone": "202-555-1234", "state": "DC", "street": "123 Main St"}
{"index": {"_id": "7", "_index": "zentity_tutorial_4_multiple_resolver_resolution"}}
{"city": "Washington", "email": "", "first_name": "Allison", "id": "7", "last_name": "Smith", "phone": "+1 (202) 555 1234", "state": "DC", "street": "555 Broad St"}
{"index": {"_id": "8", "_index": "zentity_tutorial_4_multiple_resolver_resolution"}}
{"city": "Washington", "email": "[email protected]", "first_name": "Alan", "id": "8", "last_name": "Smith", "phone": "202-000-5555", "state": "DC", "street": "555 Broad St"}
{"index": {"_id": "9", "_index": "zentity_tutorial_4_multiple_resolver_resolution"}}
{"city": "Washington", "email": "[email protected]", "first_name": "Alan", "id": "9", "last_name": "Smith", "phone": "2020005555", "state": "DC", "street": "555 Broad St"}
{"index": {"_id": "10", "_index": "zentity_tutorial_4_multiple_resolver_resolution"}}
{"city": "Washington", "email": "", "first_name": "Alison", "id": "10", "last_name": "Smith", "phone": "202-555-9876", "state": "DC", "street": "555 Broad St"}
{"index": {"_id": "11", "_index": "zentity_tutorial_4_multiple_resolver_resolution"}}
{"city": "", "email": "[email protected]", "first_name": "Alison", "id": "11", "last_name": "Jones-Smith", "phone": "2025559867", "state": "", "street": ""}
{"index": {"_id": "12", "_index": "zentity_tutorial_4_multiple_resolver_resolution"}}
{"city": "Washington", "email": "[email protected]", "first_name": "Allison", "id": "12", "last_name": "Jones-Smith", "phone": "", "state": "DC", "street": "555 Broad St"}
{"index": {"_id": "13", "_index": "zentity_tutorial_4_multiple_resolver_resolution"}}
{"city": "Arlington", "email": "[email protected]", "first_name": "Allison", "id": "13", "last_name": "Jones Smith", "phone": "703-555-5555", "state": "VA", "street": "1 Corporate Way"}
{"index": {"_id": "14", "_index": "zentity_tutorial_4_multiple_resolver_resolution"}}
{"city": "Arlington", "email": "[email protected]", "first_name": "Elise", "id": "14", "last_name": "Jonas", "phone": "703-555-5555", "state": "VA", "street": "1 Corporate Way"}

Here's what the tutorial data looks like.

id first_name last_name street city state phone email
1 Allie Jones 123 Main St Washington DC 202-555-1234 [email protected]
2 Alicia Johnson 300 Main St Washington DC 202-123-4567
3 Allie Jones 123 Main St Washington DC
4 Ally Joans 202-555-1234
5 Eli Jonas 500 23rd Street Arlington VA [email protected]
6 Allison Jones 123 Main St Washington DC 202-555-1234 [email protected]
7 Allison Smith 555 Broad St Washington DC +1 (202) 555 1234
8 Alan Smith 555 Broad St Washington DC 202-000-5555 [email protected]
9 Alan Smith 555 Broad St Washington DC 2020005555 [email protected]
10 Alison Smith 555 Broad St Washington DC 202-555-9876
11 Alison Jones-Smith 2025559867 [email protected]
12 Allison Jones-Smith 555 Broad St Washington DC [email protected]
13 Allison Jones Smith 1 Corporate Way Arlington VA 703-555-5555 [email protected]
14 Elise Jonas 1 Corporate Way Arlington VA 703-555-5555 [email protected]

2. Create the entity model

Note: Skip this step if you're using the zentity sandbox.

Let's use the Models API to create the entity model below. We'll review each part of the model in depth.

Request

PUT _zentity/models/zentity_tutorial_4_person
{
  "attributes": {
    "first_name": {
      "type": "string",
      "score": 0.6125
    },
    "last_name": {
      "type": "string",
      "score": 0.65
    },
    "street": {
      "type": "string",
      "score": 0.75
    },
    "city": {
      "type": "string",
      "score": 0.55
    },
    "state": {
      "type": "string",
      "score": 0.5125
    },
    "phone": {
      "type": "string",
      "score": 0.85
    },
    "email": {
      "type": "string",
      "score": 0.95
    }
  },
  "resolvers": {
    "name_street_city_state": {
      "attributes": [ "first_name", "last_name", "street", "city", "state" ]
    },
    "name_phone": {
      "attributes": [ "first_name", "last_name", "phone" ]
    },
    "name_email": {
      "attributes": [ "first_name", "last_name", "email" ]
    },
    "email_phone": {
      "attributes": [ "email", "phone" ]
    }
  },
  "matchers": {
    "simple": {
      "clause": {
        "match": {
          "{{ field }}": "{{ value }}"
        }
      },
      "quality": 0.975
    },
    "fuzzy": {
      "clause": {
        "match": {
          "{{ field }}": {
            "query": "{{ value }}",
            "fuzziness": "1"
          }
        }
      },
      "quality": 0.95
    },
    "exact": {
      "clause": {
        "term": {
          "{{ field }}": "{{ value }}"
        }
      },
      "quality": 1.0
    }
  },
  "indices": {
    "zentity_tutorial_4_multiple_resolver_resolution": {
      "fields": {
        "first_name.clean": {
          "attribute": "first_name",
          "matcher": "fuzzy",
          "quality": 0.975
        },
        "first_name.phonetic": {
          "attribute": "first_name",
          "matcher": "simple",
          "quality": 0.925
        },
        "last_name.clean": {
          "attribute": "last_name",
          "matcher": "fuzzy",
          "quality": 0.975
        },
        "last_name.phonetic": {
          "attribute": "last_name",
          "matcher": "simple",
          "quality": 0.925
        },
        "street.clean": {
          "attribute": "street",
          "matcher": "fuzzy",
          "quality": 0.975
        },
        "city.clean": {
          "attribute": "city",
          "matcher": "fuzzy",
          "quality": 0.975
        },
        "state.keyword": {
          "attribute": "state",
          "matcher": "exact"
        },
        "phone.clean": {
          "attribute": "phone",
          "matcher": "fuzzy",
          "quality": 0.975
        },
        "email.keyword": {
          "attribute": "email",
          "matcher": "exact"
        }
      }
    }
  }
}

Response

{
  "_index" : ".zentity-models",
  "_id" : "zentity_tutorial_4_person",
  "_version" : 1,
  "result" : "created",
  "_shards" : {
    "total" : 2,
    "successful" : 1,
    "failed" : 0
  },
  "_seq_no" : 1,
  "_primary_term" : 1
}

2.1 Review the attributes

We defined seven attributes as shown in this section:

{
  "attributes": {
    "first_name": {
      "type": "string",
      "score": 0.6125
    },
    "last_name": {
      "type": "string",
      "score": 0.65
    },
    "street": {
      "type": "string",
      "score": 0.75
    },
    "city": {
      "type": "string",
      "score": 0.55
    },
    "state": {
      "type": "string",
      "score": 0.5125
    },
    "phone": {
      "type": "string",
      "score": 0.85
    },
    "email": {
      "type": "string",
      "score": 0.95
    }
  }
}

Each attribute now has a "score" field, which represents the attribute identity confidence base score.

An attribute identity confidence base score represents the confidence that an attribute would uniquely identify the entity if it were to match, assuming the quality of its matcher and index field are perfect. The score is a floating point number in the range of 0.0 - 1.0.

Effectively, if a document matches with one or more attributes:

Generally it makes sense for every attribute to have a base score between 0.5 - 1.0. A base score that's less than 0.5 would indicate that the matching attribute represents some level of a false match, which is contrary to the general usage of zentity where a matching attribute represents some level of a true match.

Cardinality would be a good statistic by which to define a base score. For example:

Tip

Care should be taken when using a base score of 1.0 or 0.0, because it would allow a single attribute identity confidence score to determine the document "_score". Whenever there is an attribute identity confidence score of 1.0 or 0.0, it takes precedence over any other attribute identity confidence score in the document. For example, you might have an "id" field that you absolutely trust to identify an entity. If you allow the score of the "id" field to be 1.0, then anytime the "id" field matches in a document, no other attribute identity confidence score would matter because you've already stated that the "id" field always indicates a match with perfect confidence. A best practice would be to use a high number such as 0.99 to allow for some small level of variability and more nuanced rankings of documents.

The entity model in this tutorial chose the following "score" values:

High cardinality fields

Example:

In our tutorial model, if the "email" and "phone" attributes match in a document, then composite identity confidence score of the two attributes would be approximately 0.9908 using the following formula:

(.95 * .85) / ((.95 * .85) + ((1 - .95) * (1 - .85))) = 0.99079754601

Normal cardinality fields

Example:

In our tutorial model, if the "first_name" and "last_name" attributes match in a document, then composite identity confidence score of the two attributes would be approximately 0.7459 using the following formula:

(.65 * .6125) / ((.65 * .6125) + ((1 - .65) * (1 - .6125))) = 0.74590163934

Low cardinality fields

Example:

In our tutorial model, if the "city" and "state" attributes match in a document, then composite identity confidence score of the two attributes would be approximately 0.5623 using the following formula:

(.55 * .5125) / ((.55 * .5125) + ((1 - .55) * (1 - .5125))) = 0.56234413965

More examples

In our tutorial model, if the "first_name", "last_name", "street", "city" and "state" attributes match in a document, then composite identity confidence score of the two attributes would be approximately 0.7904 using the following formula:

(.65 * .6125 * .55 * .5125) / ((.65 * .6125 * .55 * .5125) + ((1 - .65) * (1 - .6125) * (1 - .55) * (1 - .5125))) = 0.79043565348

If the "phone", "last_name", and "city" attributes match in a document, then composite identity confidence score of the two attributes would be approximately 0.9279 using the following formula:

(.85 * .65 * .55) / ((.85 * .65 * .55) + ((1 - .85) * (1 - .65) * (1 - .55))) = 0.92786259542

Every example above can be modified using matcher quality scores and index field quality scores to represent increased uncertainty due to known imperfections in the matchers or data fields that led to a match.

2.2 Review the matchers

We defined three matchers called "simple", "fuzzy", and "exact" as shown in this section:

{
  "matchers": {
    "simple": {
      "clause": {
        "match": {
          "{{ field }}": "{{ value }}"
        }
      },
      "quality": 0.975
    },
    "fuzzy": {
      "clause": {
        "match": {
          "{{ field }}": {
            "query": "{{ value }}",
            "fuzziness": "1"
          }
        }
      },
      "quality": 0.95
    },
    "exact": {
      "clause": {
        "term": {
          "{{ field }}": "{{ value }}"
        }
      },
      "quality": 1.0
    }
  }
}

Each attribute now has a "quality" field. A matcher quality score represents the quality or trustworthiness of a matcher. It modifies the attribute identity confidence base score and contributes to the final attribute identity confidence score.

Effectively this means:

The purpose of the matcher quality score is to reflect any dubious matcher quality in the final document "_score". For example, an exact matcher may have a quality score of 1.0, while a fuzzy matcher may have a quality score of 0.95 to express slightly less confidence in the quality of the match.

Examples

In our tutorial model, we assigned quality scores to the matchers:

2.3 Review the indices

We defined a single index as shown in this section:

{
  "indices": {
    "zentity_tutorial_4_multiple_resolver_resolution": {
      "fields": {
        "first_name.clean": {
          "attribute": "first_name",
          "matcher": "fuzzy"
        },
        "first_name.phonetic": {
          "attribute": "first_name",
          "matcher": "simple"
        },
        "last_name.clean": {
          "attribute": "last_name",
          "matcher": "fuzzy"
        },
        "last_name.phonetic": {
          "attribute": "last_name",
          "matcher": "simple"
        },
        "street.clean": {
          "attribute": "street",
          "matcher": "fuzzy"
        },
        "city.clean": {
          "attribute": "city",
          "matcher": "fuzzy"
        },
        "state.keyword": {
          "attribute": "state",
          "matcher": "exact"
        },
        "phone.clean": {
          "attribute": "phone",
          "matcher": "fuzzy"
        },
        "email.keyword": {
          "attribute": "email",
          "matcher": "exact"
        }
      }
    }
  }
}

3. Resolve an entity

3.1 Run a resolution job with "_score"

Let's use the Resolution API to resolve a person with a known first name, last name, and phone number. We'll set _score=true to implement scoring and _source=false to focus only on the normalized data.

Request

POST _zentity/resolution/zentity_tutorial_4_person?pretty&_source=false&_score=true
{
  "attributes": {
    "first_name": [ "Allie" ],
    "last_name": [ "Jones" ],
    "phone": [ "202-555-1234" ]
  }
}

Response

{
  "took" : 46,
  "hits" : {
    "total" : 9,
    "hits" : [ {
      "_index" : "zentity_tutorial_4_multiple_resolver_resolution",
      "_id" : "1",
      "_hop" : 0,
      "_query" : 0,
      "_score" : 0.9268137343974269,
      "_attributes" : {
        "city" : [ "Washington" ],
        "email" : [ "[email protected]" ],
        "first_name" : [ "Allie" ],
        "last_name" : [ "Jones" ],
        "phone" : [ "202-555-1234" ],
        "state" : [ "DC" ],
        "street" : [ "123 Main St" ]
      }
    }, {
      "_index" : "zentity_tutorial_4_multiple_resolver_resolution",
      "_id" : "4",
      "_hop" : 0,
      "_query" : 0,
      "_score" : 0.9249425179947204,
      "_attributes" : {
        "city" : [ "" ],
        "email" : [ "" ],
        "first_name" : [ "Ally" ],
        "last_name" : [ "Joans" ],
        "phone" : [ "202-555-1234" ],
        "state" : [ "" ],
        "street" : [ "" ]
      }
    }, {
      "_index" : "zentity_tutorial_4_multiple_resolver_resolution",
      "_id" : "3",
      "_hop" : 1,
      "_query" : 0,
      "_score" : 0.9030972510297278,
      "_attributes" : {
        "city" : [ "Washington" ],
        "email" : [ "" ],
        "first_name" : [ "Allie" ],
        "last_name" : [ "Jones" ],
        "phone" : [ "" ],
        "state" : [ "DC" ],
        "street" : [ "123 Main St" ]
      }
    }, {
      "_index" : "zentity_tutorial_4_multiple_resolver_resolution",
      "_id" : "6",
      "_hop" : 1,
      "_query" : 0,
      "_score" : 0.9981643732697082,
      "_attributes" : {
        "city" : [ "Washington" ],
        "email" : [ "[email protected]" ],
        "first_name" : [ "Allison" ],
        "last_name" : [ "Jones" ],
        "phone" : [ "202-555-1234" ],
        "state" : [ "DC" ],
        "street" : [ "123 Main St" ]
      }
    }, {
      "_index" : "zentity_tutorial_4_multiple_resolver_resolution",
      "_id" : "11",
      "_hop" : 2,
      "_query" : 0,
      "_score" : 0.9808891618065275,
      "_attributes" : {
        "city" : [ "" ],
        "email" : [ "[email protected]" ],
        "first_name" : [ "Alison" ],
        "last_name" : [ "Jones-Smith" ],
        "phone" : [ "2025559867" ],
        "state" : [ "" ],
        "street" : [ "" ]
      }
    }, {
      "_index" : "zentity_tutorial_4_multiple_resolver_resolution",
      "_id" : "7",
      "_hop" : 3,
      "_query" : 0,
      "_score" : 0.9412842840763994,
      "_attributes" : {
        "city" : [ "Washington" ],
        "email" : [ "" ],
        "first_name" : [ "Allison" ],
        "last_name" : [ "Smith" ],
        "phone" : [ "+1 (202) 555 1234" ],
        "state" : [ "DC" ],
        "street" : [ "555 Broad St" ]
      }
    }, {
      "_index" : "zentity_tutorial_4_multiple_resolver_resolution",
      "_id" : "10",
      "_hop" : 3,
      "_query" : 0,
      "_score" : 0.9412842840763994,
      "_attributes" : {
        "city" : [ "Washington" ],
        "email" : [ "" ],
        "first_name" : [ "Alison" ],
        "last_name" : [ "Smith" ],
        "phone" : [ "202-555-9876" ],
        "state" : [ "DC" ],
        "street" : [ "555 Broad St" ]
      }
    }, {
      "_index" : "zentity_tutorial_4_multiple_resolver_resolution",
      "_id" : "12",
      "_hop" : 4,
      "_query" : 0,
      "_score" : 0.9030972510297278,
      "_attributes" : {
        "city" : [ "Washington" ],
        "email" : [ "[email protected]" ],
        "first_name" : [ "Allison" ],
        "last_name" : [ "Jones-Smith" ],
        "phone" : [ "" ],
        "state" : [ "DC" ],
        "street" : [ "555 Broad St" ]
      }
    }, {
      "_index" : "zentity_tutorial_4_multiple_resolver_resolution",
      "_id" : "13",
      "_hop" : 5,
      "_query" : 0,
      "_score" : 0.9808891618065275,
      "_attributes" : {
        "city" : [ "Arlington" ],
        "email" : [ "[email protected]" ],
        "first_name" : [ "Allison" ],
        "last_name" : [ "Jones Smith" ],
        "phone" : [ "703-555-5555" ],
        "state" : [ "VA" ],
        "street" : [ "1 Corporate Way" ]
      }
    } ]
  }
}

Each document now has a "_score" field that represents the confidence by which the document matched known attributes of the entity. A higher "_score" indicates greater confidence in the match.

3.2 Show the "_explanation"

We can learn more about why a document matched and received its "_score" by using the "_explanation" field. Let's run the job again and include the "_explanation" field of each document. The "_explanation" field tells us which resolvers caused a document to match, and more specifically, which input value matched which indexed value using which matcher and any parameters.

Request

POST _zentity/resolution/zentity_tutorial_4_person?pretty&_source=false&_score=true&_explanation=true
{
  "attributes": {
    "first_name": [ "Allie" ],
    "last_name": [ "Jones" ],
    "phone": [ "202-555-1234" ]
  }
}

Response

{
  "took" : 47,
  "hits" : {
    "total" : 9,
    "hits" : [ {
      "_index" : "zentity_tutorial_4_multiple_resolver_resolution",
      "_id" : "1",
      "_hop" : 0,
      "_query" : 0,
      "_score" : 0.9268137343974269,
      "_attributes" : {
        "city" : [ "Washington" ],
        "email" : [ "[email protected]" ],
        "first_name" : [ "Allie" ],
        "last_name" : [ "Jones" ],
        "phone" : [ "202-555-1234" ],
        "state" : [ "DC" ],
        "street" : [ "123 Main St" ]
      },
      "_explanation" : {
        "resolvers" : {
          "name_phone" : {
            "attributes" : [ "first_name", "last_name", "phone" ]
          }
        },
        "matches" : [ {
          "attribute" : "first_name",
          "target_field" : "first_name.clean",
          "target_value" : "Allie",
          "input_value" : "Allie",
          "input_matcher" : "fuzzy",
          "input_matcher_params" : { },
          "score" : 0.6042031250000001
        }, {
          "attribute" : "first_name",
          "target_field" : "first_name.phonetic",
          "target_value" : "Allie",
          "input_value" : "Allie",
          "input_matcher" : "simple",
          "input_matcher_params" : { },
          "score" : 0.6014609375000001
        }, {
          "attribute" : "last_name",
          "target_field" : "last_name.clean",
          "target_value" : "Jones",
          "input_value" : "Jones",
          "input_matcher" : "fuzzy",
          "input_matcher_params" : { },
          "score" : 0.6389374999999999
        }, {
          "attribute" : "last_name",
          "target_field" : "last_name.phonetic",
          "target_value" : "Jones",
          "input_value" : "Jones",
          "input_matcher" : "simple",
          "input_matcher_params" : { },
          "score" : 0.63528125
        }, {
          "attribute" : "phone",
          "target_field" : "phone.clean",
          "target_value" : "202-555-1234",
          "input_value" : "202-555-1234",
          "input_matcher" : "fuzzy",
          "input_matcher_params" : { },
          "score" : 0.8241875
        } ]
      }
    }, {
      "_index" : "zentity_tutorial_4_multiple_resolver_resolution",
      "_id" : "4",
      "_hop" : 0,
      "_query" : 0,
      "_score" : 0.9249425179947204,
      "_attributes" : {
        "city" : [ "" ],
        "email" : [ "" ],
        "first_name" : [ "Ally" ],
        "last_name" : [ "Joans" ],
        "phone" : [ "202-555-1234" ],
        "state" : [ "" ],
        "street" : [ "" ]
      },
      "_explanation" : {
        "resolvers" : {
          "name_phone" : {
            "attributes" : [ "first_name", "last_name", "phone" ]
          }
        },
        "matches" : [ {
          "attribute" : "first_name",
          "target_field" : "first_name.phonetic",
          "target_value" : "Ally",
          "input_value" : "Allie",
          "input_matcher" : "simple",
          "input_matcher_params" : { },
          "score" : 0.6014609375000001
        }, {
          "attribute" : "last_name",
          "target_field" : "last_name.phonetic",
          "target_value" : "Joans",
          "input_value" : "Jones",
          "input_matcher" : "simple",
          "input_matcher_params" : { },
          "score" : 0.63528125
        }, {
          "attribute" : "phone",
          "target_field" : "phone.clean",
          "target_value" : "202-555-1234",
          "input_value" : "202-555-1234",
          "input_matcher" : "fuzzy",
          "input_matcher_params" : { },
          "score" : 0.8241875
        } ]
      }
    }, {
      "_index" : "zentity_tutorial_4_multiple_resolver_resolution",
      "_id" : "3",
      "_hop" : 1,
      "_query" : 0,
      "_score" : 0.9030972510297278,
      "_attributes" : {
        "city" : [ "Washington" ],
        "email" : [ "" ],
        "first_name" : [ "Allie" ],
        "last_name" : [ "Jones" ],
        "phone" : [ "" ],
        "state" : [ "DC" ],
        "street" : [ "123 Main St" ]
      },
      "_explanation" : {
        "resolvers" : {
          "name_street_city_state" : {
            "attributes" : [ "city", "first_name", "last_name", "state", "street" ]
          }
        },
        "matches" : [ {
          "attribute" : "city",
          "target_field" : "city.clean",
          "target_value" : "Washington",
          "input_value" : "Washington",
          "input_matcher" : "fuzzy",
          "input_matcher_params" : { },
          "score" : 0.5463125
        }, {
          "attribute" : "first_name",
          "target_field" : "first_name.clean",
          "target_value" : "Allie",
          "input_value" : "Allie",
          "input_matcher" : "fuzzy",
          "input_matcher_params" : { },
          "score" : 0.6042031250000001
        }, {
          "attribute" : "first_name",
          "target_field" : "first_name.phonetic",
          "target_value" : "Allie",
          "input_value" : "Allie",
          "input_matcher" : "simple",
          "input_matcher_params" : { },
          "score" : 0.6014609375000001
        }, {
          "attribute" : "first_name",
          "target_field" : "first_name.phonetic",
          "target_value" : "Allie",
          "input_value" : "Ally",
          "input_matcher" : "simple",
          "input_matcher_params" : { },
          "score" : 0.6014609375000001
        }, {
          "attribute" : "last_name",
          "target_field" : "last_name.clean",
          "target_value" : "Jones",
          "input_value" : "Jones",
          "input_matcher" : "fuzzy",
          "input_matcher_params" : { },
          "score" : 0.6389374999999999
        }, {
          "attribute" : "last_name",
          "target_field" : "last_name.phonetic",
          "target_value" : "Jones",
          "input_value" : "Joans",
          "input_matcher" : "simple",
          "input_matcher_params" : { },
          "score" : 0.63528125
        }, {
          "attribute" : "last_name",
          "target_field" : "last_name.phonetic",
          "target_value" : "Jones",
          "input_value" : "Jones",
          "input_matcher" : "simple",
          "input_matcher_params" : { },
          "score" : 0.63528125
        }, {
          "attribute" : "state",
          "target_field" : "state.keyword",
          "target_value" : "DC",
          "input_value" : "DC",
          "input_matcher" : "exact",
          "input_matcher_params" : { },
          "score" : 0.5125
        }, {
          "attribute" : "street",
          "target_field" : "street.clean",
          "target_value" : "123 Main St",
          "input_value" : "123 Main St",
          "input_matcher" : "fuzzy",
          "input_matcher_params" : { },
          "score" : 0.7315624999999999
        } ]
      }
    }, {
      "_index" : "zentity_tutorial_4_multiple_resolver_resolution",
      "_id" : "6",
      "_hop" : 1,
      "_query" : 0,
      "_score" : 0.9981643732697082,
      "_attributes" : {
        "city" : [ "Washington" ],
        "email" : [ "[email protected]" ],
        "first_name" : [ "Allison" ],
        "last_name" : [ "Jones" ],
        "phone" : [ "202-555-1234" ],
        "state" : [ "DC" ],
        "street" : [ "123 Main St" ]
      },
      "_explanation" : {
        "resolvers" : {
          "email_phone" : {
            "attributes" : [ "email", "phone" ]
          }
        },
        "matches" : [ {
          "attribute" : "city",
          "target_field" : "city.clean",
          "target_value" : "Washington",
          "input_value" : "Washington",
          "input_matcher" : "fuzzy",
          "input_matcher_params" : { },
          "score" : 0.5463125
        }, {
          "attribute" : "email",
          "target_field" : "email.keyword",
          "target_value" : "[email protected]",
          "input_value" : "[email protected]",
          "input_matcher" : "exact",
          "input_matcher_params" : { },
          "score" : 0.95
        }, {
          "attribute" : "last_name",
          "target_field" : "last_name.clean",
          "target_value" : "Jones",
          "input_value" : "Jones",
          "input_matcher" : "fuzzy",
          "input_matcher_params" : { },
          "score" : 0.6389374999999999
        }, {
          "attribute" : "last_name",
          "target_field" : "last_name.phonetic",
          "target_value" : "Jones",
          "input_value" : "Joans",
          "input_matcher" : "simple",
          "input_matcher_params" : { },
          "score" : 0.63528125
        }, {
          "attribute" : "last_name",
          "target_field" : "last_name.phonetic",
          "target_value" : "Jones",
          "input_value" : "Jones",
          "input_matcher" : "simple",
          "input_matcher_params" : { },
          "score" : 0.63528125
        }, {
          "attribute" : "phone",
          "target_field" : "phone.clean",
          "target_value" : "202-555-1234",
          "input_value" : "202-555-1234",
          "input_matcher" : "fuzzy",
          "input_matcher_params" : { },
          "score" : 0.8241875
        }, {
          "attribute" : "state",
          "target_field" : "state.keyword",
          "target_value" : "DC",
          "input_value" : "DC",
          "input_matcher" : "exact",
          "input_matcher_params" : { },
          "score" : 0.5125
        }, {
          "attribute" : "street",
          "target_field" : "street.clean",
          "target_value" : "123 Main St",
          "input_value" : "123 Main St",
          "input_matcher" : "fuzzy",
          "input_matcher_params" : { },
          "score" : 0.7315624999999999
        } ]
      }
    }, {
      "_index" : "zentity_tutorial_4_multiple_resolver_resolution",
      "_id" : "11",
      "_hop" : 2,
      "_query" : 0,
      "_score" : 0.9808891618065275,
      "_attributes" : {
        "city" : [ "" ],
        "email" : [ "[email protected]" ],
        "first_name" : [ "Alison" ],
        "last_name" : [ "Jones-Smith" ],
        "phone" : [ "2025559867" ],
        "state" : [ "" ],
        "street" : [ "" ]
      },
      "_explanation" : {
        "resolvers" : {
          "name_email" : {
            "attributes" : [ "email", "first_name", "last_name" ]
          }
        },
        "matches" : [ {
          "attribute" : "email",
          "target_field" : "email.keyword",
          "target_value" : "[email protected]",
          "input_value" : "[email protected]",
          "input_matcher" : "exact",
          "input_matcher_params" : { },
          "score" : 0.95
        }, {
          "attribute" : "first_name",
          "target_field" : "first_name.clean",
          "target_value" : "Alison",
          "input_value" : "Allison",
          "input_matcher" : "fuzzy",
          "input_matcher_params" : { },
          "score" : 0.6042031250000001
        }, {
          "attribute" : "first_name",
          "target_field" : "first_name.phonetic",
          "target_value" : "Alison",
          "input_value" : "Allison",
          "input_matcher" : "simple",
          "input_matcher_params" : { },
          "score" : 0.6014609375000001
        }, {
          "attribute" : "last_name",
          "target_field" : "last_name.clean",
          "target_value" : "Jones-Smith",
          "input_value" : "Jones",
          "input_matcher" : "fuzzy",
          "input_matcher_params" : { },
          "score" : 0.6389374999999999
        }, {
          "attribute" : "last_name",
          "target_field" : "last_name.phonetic",
          "target_value" : "Jones-Smith",
          "input_value" : "Joans",
          "input_matcher" : "simple",
          "input_matcher_params" : { },
          "score" : 0.63528125
        }, {
          "attribute" : "last_name",
          "target_field" : "last_name.phonetic",
          "target_value" : "Jones-Smith",
          "input_value" : "Jones",
          "input_matcher" : "simple",
          "input_matcher_params" : { },
          "score" : 0.63528125
        } ]
      }
    }, {
      "_index" : "zentity_tutorial_4_multiple_resolver_resolution",
      "_id" : "7",
      "_hop" : 3,
      "_query" : 0,
      "_score" : 0.9412842840763994,
      "_attributes" : {
        "city" : [ "Washington" ],
        "email" : [ "" ],
        "first_name" : [ "Allison" ],
        "last_name" : [ "Smith" ],
        "phone" : [ "+1 (202) 555 1234" ],
        "state" : [ "DC" ],
        "street" : [ "555 Broad St" ]
      },
      "_explanation" : {
        "resolvers" : {
          "name_phone" : {
            "attributes" : [ "first_name", "last_name", "phone" ]
          }
        },
        "matches" : [ {
          "attribute" : "city",
          "target_field" : "city.clean",
          "target_value" : "Washington",
          "input_value" : "Washington",
          "input_matcher" : "fuzzy",
          "input_matcher_params" : { },
          "score" : 0.5463125
        }, {
          "attribute" : "first_name",
          "target_field" : "first_name.clean",
          "target_value" : "Allison",
          "input_value" : "Alison",
          "input_matcher" : "fuzzy",
          "input_matcher_params" : { },
          "score" : 0.6042031250000001
        }, {
          "attribute" : "first_name",
          "target_field" : "first_name.clean",
          "target_value" : "Allison",
          "input_value" : "Allison",
          "input_matcher" : "fuzzy",
          "input_matcher_params" : { },
          "score" : 0.6042031250000001
        }, {
          "attribute" : "first_name",
          "target_field" : "first_name.phonetic",
          "target_value" : "Allison",
          "input_value" : "Alison",
          "input_matcher" : "simple",
          "input_matcher_params" : { },
          "score" : 0.6014609375000001
        }, {
          "attribute" : "first_name",
          "target_field" : "first_name.phonetic",
          "target_value" : "Allison",
          "input_value" : "Allison",
          "input_matcher" : "simple",
          "input_matcher_params" : { },
          "score" : 0.6014609375000001
        }, {
          "attribute" : "last_name",
          "target_field" : "last_name.clean",
          "target_value" : "Smith",
          "input_value" : "Jones-Smith",
          "input_matcher" : "fuzzy",
          "input_matcher_params" : { },
          "score" : 0.6389374999999999
        }, {
          "attribute" : "last_name",
          "target_field" : "last_name.phonetic",
          "target_value" : "Smith",
          "input_value" : "Jones-Smith",
          "input_matcher" : "simple",
          "input_matcher_params" : { },
          "score" : 0.63528125
        }, {
          "attribute" : "phone",
          "target_field" : "phone.clean",
          "target_value" : "+1 (202) 555 1234",
          "input_value" : "202-555-1234",
          "input_matcher" : "fuzzy",
          "input_matcher_params" : { },
          "score" : 0.8241875
        }, {
          "attribute" : "state",
          "target_field" : "state.keyword",
          "target_value" : "DC",
          "input_value" : "DC",
          "input_matcher" : "exact",
          "input_matcher_params" : { },
          "score" : 0.5125
        } ]
      }
    }, {
      "_index" : "zentity_tutorial_4_multiple_resolver_resolution",
      "_id" : "10",
      "_hop" : 3,
      "_query" : 0,
      "_score" : 0.9412842840763994,
      "_attributes" : {
        "city" : [ "Washington" ],
        "email" : [ "" ],
        "first_name" : [ "Alison" ],
        "last_name" : [ "Smith" ],
        "phone" : [ "202-555-9876" ],
        "state" : [ "DC" ],
        "street" : [ "555 Broad St" ]
      },
      "_explanation" : {
        "resolvers" : {
          "name_phone" : {
            "attributes" : [ "first_name", "last_name", "phone" ]
          }
        },
        "matches" : [ {
          "attribute" : "city",
          "target_field" : "city.clean",
          "target_value" : "Washington",
          "input_value" : "Washington",
          "input_matcher" : "fuzzy",
          "input_matcher_params" : { },
          "score" : 0.5463125
        }, {
          "attribute" : "first_name",
          "target_field" : "first_name.clean",
          "target_value" : "Alison",
          "input_value" : "Alison",
          "input_matcher" : "fuzzy",
          "input_matcher_params" : { },
          "score" : 0.6042031250000001
        }, {
          "attribute" : "first_name",
          "target_field" : "first_name.clean",
          "target_value" : "Alison",
          "input_value" : "Allison",
          "input_matcher" : "fuzzy",
          "input_matcher_params" : { },
          "score" : 0.6042031250000001
        }, {
          "attribute" : "first_name",
          "target_field" : "first_name.phonetic",
          "target_value" : "Alison",
          "input_value" : "Alison",
          "input_matcher" : "simple",
          "input_matcher_params" : { },
          "score" : 0.6014609375000001
        }, {
          "attribute" : "first_name",
          "target_field" : "first_name.phonetic",
          "target_value" : "Alison",
          "input_value" : "Allison",
          "input_matcher" : "simple",
          "input_matcher_params" : { },
          "score" : 0.6014609375000001
        }, {
          "attribute" : "last_name",
          "target_field" : "last_name.clean",
          "target_value" : "Smith",
          "input_value" : "Jones-Smith",
          "input_matcher" : "fuzzy",
          "input_matcher_params" : { },
          "score" : 0.6389374999999999
        }, {
          "attribute" : "last_name",
          "target_field" : "last_name.phonetic",
          "target_value" : "Smith",
          "input_value" : "Jones-Smith",
          "input_matcher" : "simple",
          "input_matcher_params" : { },
          "score" : 0.63528125
        }, {
          "attribute" : "phone",
          "target_field" : "phone.clean",
          "target_value" : "202-555-9876",
          "input_value" : "2025559867",
          "input_matcher" : "fuzzy",
          "input_matcher_params" : { },
          "score" : 0.8241875
        }, {
          "attribute" : "state",
          "target_field" : "state.keyword",
          "target_value" : "DC",
          "input_value" : "DC",
          "input_matcher" : "exact",
          "input_matcher_params" : { },
          "score" : 0.5125
        } ]
      }
    }, {
      "_index" : "zentity_tutorial_4_multiple_resolver_resolution",
      "_id" : "12",
      "_hop" : 4,
      "_query" : 0,
      "_score" : 0.9030972510297278,
      "_attributes" : {
        "city" : [ "Washington" ],
        "email" : [ "[email protected]" ],
        "first_name" : [ "Allison" ],
        "last_name" : [ "Jones-Smith" ],
        "phone" : [ "" ],
        "state" : [ "DC" ],
        "street" : [ "555 Broad St" ]
      },
      "_explanation" : {
        "resolvers" : {
          "name_street_city_state" : {
            "attributes" : [ "city", "first_name", "last_name", "state", "street" ]
          }
        },
        "matches" : [ {
          "attribute" : "city",
          "target_field" : "city.clean",
          "target_value" : "Washington",
          "input_value" : "Washington",
          "input_matcher" : "fuzzy",
          "input_matcher_params" : { },
          "score" : 0.5463125
        }, {
          "attribute" : "first_name",
          "target_field" : "first_name.clean",
          "target_value" : "Allison",
          "input_value" : "Alison",
          "input_matcher" : "fuzzy",
          "input_matcher_params" : { },
          "score" : 0.6042031250000001
        }, {
          "attribute" : "first_name",
          "target_field" : "first_name.clean",
          "target_value" : "Allison",
          "input_value" : "Allison",
          "input_matcher" : "fuzzy",
          "input_matcher_params" : { },
          "score" : 0.6042031250000001
        }, {
          "attribute" : "first_name",
          "target_field" : "first_name.phonetic",
          "target_value" : "Allison",
          "input_value" : "Alison",
          "input_matcher" : "simple",
          "input_matcher_params" : { },
          "score" : 0.6014609375000001
        }, {
          "attribute" : "first_name",
          "target_field" : "first_name.phonetic",
          "target_value" : "Allison",
          "input_value" : "Allison",
          "input_matcher" : "simple",
          "input_matcher_params" : { },
          "score" : 0.6014609375000001
        }, {
          "attribute" : "last_name",
          "target_field" : "last_name.clean",
          "target_value" : "Jones-Smith",
          "input_value" : "Jones",
          "input_matcher" : "fuzzy",
          "input_matcher_params" : { },
          "score" : 0.6389374999999999
        }, {
          "attribute" : "last_name",
          "target_field" : "last_name.clean",
          "target_value" : "Jones-Smith",
          "input_value" : "Jones-Smith",
          "input_matcher" : "fuzzy",
          "input_matcher_params" : { },
          "score" : 0.6389374999999999
        }, {
          "attribute" : "last_name",
          "target_field" : "last_name.clean",
          "target_value" : "Jones-Smith",
          "input_value" : "Smith",
          "input_matcher" : "fuzzy",
          "input_matcher_params" : { },
          "score" : 0.6389374999999999
        }, {
          "attribute" : "last_name",
          "target_field" : "last_name.phonetic",
          "target_value" : "Jones-Smith",
          "input_value" : "Joans",
          "input_matcher" : "simple",
          "input_matcher_params" : { },
          "score" : 0.63528125
        }, {
          "attribute" : "last_name",
          "target_field" : "last_name.phonetic",
          "target_value" : "Jones-Smith",
          "input_value" : "Jones",
          "input_matcher" : "simple",
          "input_matcher_params" : { },
          "score" : 0.63528125
        }, {
          "attribute" : "last_name",
          "target_field" : "last_name.phonetic",
          "target_value" : "Jones-Smith",
          "input_value" : "Jones-Smith",
          "input_matcher" : "simple",
          "input_matcher_params" : { },
          "score" : 0.63528125
        }, {
          "attribute" : "last_name",
          "target_field" : "last_name.phonetic",
          "target_value" : "Jones-Smith",
          "input_value" : "Smith",
          "input_matcher" : "simple",
          "input_matcher_params" : { },
          "score" : 0.63528125
        }, {
          "attribute" : "state",
          "target_field" : "state.keyword",
          "target_value" : "DC",
          "input_value" : "DC",
          "input_matcher" : "exact",
          "input_matcher_params" : { },
          "score" : 0.5125
        }, {
          "attribute" : "street",
          "target_field" : "street.clean",
          "target_value" : "555 Broad St",
          "input_value" : "555 Broad St",
          "input_matcher" : "fuzzy",
          "input_matcher_params" : { },
          "score" : 0.7315624999999999
        } ]
      }
    }, {
      "_index" : "zentity_tutorial_4_multiple_resolver_resolution",
      "_id" : "13",
      "_hop" : 5,
      "_query" : 0,
      "_score" : 0.9808891618065275,
      "_attributes" : {
        "city" : [ "Arlington" ],
        "email" : [ "[email protected]" ],
        "first_name" : [ "Allison" ],
        "last_name" : [ "Jones Smith" ],
        "phone" : [ "703-555-5555" ],
        "state" : [ "VA" ],
        "street" : [ "1 Corporate Way" ]
      },
      "_explanation" : {
        "resolvers" : {
          "name_email" : {
            "attributes" : [ "email", "first_name", "last_name" ]
          }
        },
        "matches" : [ {
          "attribute" : "email",
          "target_field" : "email.keyword",
          "target_value" : "[email protected]",
          "input_value" : "[email protected]",
          "input_matcher" : "exact",
          "input_matcher_params" : { },
          "score" : 0.95
        }, {
          "attribute" : "first_name",
          "target_field" : "first_name.clean",
          "target_value" : "Allison",
          "input_value" : "Alison",
          "input_matcher" : "fuzzy",
          "input_matcher_params" : { },
          "score" : 0.6042031250000001
        }, {
          "attribute" : "first_name",
          "target_field" : "first_name.clean",
          "target_value" : "Allison",
          "input_value" : "Allison",
          "input_matcher" : "fuzzy",
          "input_matcher_params" : { },
          "score" : 0.6042031250000001
        }, {
          "attribute" : "first_name",
          "target_field" : "first_name.phonetic",
          "target_value" : "Allison",
          "input_value" : "Alison",
          "input_matcher" : "simple",
          "input_matcher_params" : { },
          "score" : 0.6014609375000001
        }, {
          "attribute" : "first_name",
          "target_field" : "first_name.phonetic",
          "target_value" : "Allison",
          "input_value" : "Allison",
          "input_matcher" : "simple",
          "input_matcher_params" : { },
          "score" : 0.6014609375000001
        }, {
          "attribute" : "last_name",
          "target_field" : "last_name.clean",
          "target_value" : "Jones Smith",
          "input_value" : "Jones",
          "input_matcher" : "fuzzy",
          "input_matcher_params" : { },
          "score" : 0.6389374999999999
        }, {
          "attribute" : "last_name",
          "target_field" : "last_name.clean",
          "target_value" : "Jones Smith",
          "input_value" : "Jones-Smith",
          "input_matcher" : "fuzzy",
          "input_matcher_params" : { },
          "score" : 0.6389374999999999
        }, {
          "attribute" : "last_name",
          "target_field" : "last_name.clean",
          "target_value" : "Jones Smith",
          "input_value" : "Smith",
          "input_matcher" : "fuzzy",
          "input_matcher_params" : { },
          "score" : 0.6389374999999999
        }, {
          "attribute" : "last_name",
          "target_field" : "last_name.phonetic",
          "target_value" : "Jones Smith",
          "input_value" : "Joans",
          "input_matcher" : "simple",
          "input_matcher_params" : { },
          "score" : 0.63528125
        }, {
          "attribute" : "last_name",
          "target_field" : "last_name.phonetic",
          "target_value" : "Jones Smith",
          "input_value" : "Jones",
          "input_matcher" : "simple",
          "input_matcher_params" : { },
          "score" : 0.63528125
        }, {
          "attribute" : "last_name",
          "target_field" : "last_name.phonetic",
          "target_value" : "Jones Smith",
          "input_value" : "Jones-Smith",
          "input_matcher" : "simple",
          "input_matcher_params" : { },
          "score" : 0.63528125
        }, {
          "attribute" : "last_name",
          "target_field" : "last_name.phonetic",
          "target_value" : "Jones Smith",
          "input_value" : "Smith",
          "input_matcher" : "simple",
          "input_matcher_params" : { },
          "score" : 0.63528125
        } ]
      }
    } ]
  }
}

Let's look at the "_explanation" of the document with the highest "_score" to see what led to its high confidence:

{
  "_index" : "zentity_tutorial_4_multiple_resolver_resolution",
  "_id" : "6",
  "_hop" : 1,
  "_query" : 0,
  "_score" : 0.9981643732697082,
  "_attributes" : {
    "city" : [ "Washington" ],
    "email" : [ "[email protected]" ],
    "first_name" : [ "Allison" ],
    "last_name" : [ "Jones" ],
    "phone" : [ "202-555-1234" ],
    "state" : [ "DC" ],
    "street" : [ "123 Main St" ]
  },
  "_explanation" : {
    "resolvers" : {
      "email_phone" : {
        "attributes" : [ "email", "phone" ]
      }
    },
    "matches" : [ {
      "attribute" : "city",
      "target_field" : "city.clean",
      "target_value" : "Washington",
      "input_value" : "Washington",
      "input_matcher" : "fuzzy",
      "input_matcher_params" : { },
      "score" : 0.5463125
    }, {
      "attribute" : "email",
      "target_field" : "email.keyword",
      "target_value" : "[email protected]",
      "input_value" : "[email protected]",
      "input_matcher" : "exact",
      "input_matcher_params" : { },
      "score" : 0.95
    }, {
      "attribute" : "last_name",
      "target_field" : "last_name.clean",
      "target_value" : "Jones",
      "input_value" : "Jones",
      "input_matcher" : "fuzzy",
      "input_matcher_params" : { },
      "score" : 0.6389374999999999
    }, {
      "attribute" : "last_name",
      "target_field" : "last_name.phonetic",
      "target_value" : "Jones",
      "input_value" : "Joans",
      "input_matcher" : "simple",
      "input_matcher_params" : { },
      "score" : 0.63528125
    }, {
      "attribute" : "last_name",
      "target_field" : "last_name.phonetic",
      "target_value" : "Jones",
      "input_value" : "Jones",
      "input_matcher" : "simple",
      "input_matcher_params" : { },
      "score" : 0.63528125
    }, {
      "attribute" : "phone",
      "target_field" : "phone.clean",
      "target_value" : "202-555-1234",
      "input_value" : "202-555-1234",
      "input_matcher" : "fuzzy",
      "input_matcher_params" : { },
      "score" : 0.8241875
    }, {
      "attribute" : "state",
      "target_field" : "state.keyword",
      "target_value" : "DC",
      "input_value" : "DC",
      "input_matcher" : "exact",
      "input_matcher_params" : { },
      "score" : 0.5125
    }, {
      "attribute" : "street",
      "target_field" : "street.clean",
      "target_value" : "123 Main St",
      "input_value" : "123 Main St",
      "input_matcher" : "fuzzy",
      "input_matcher_params" : { },
      "score" : 0.7315624999999999
    } ]
  }
}

The "_explanation" field shows the details of each matching attribute in the document, including the attribute's "score". Some attributes in this document matched multiple times, such as the "last_name" attribute. The scores for those attributes were affected by the "quality" score modifiers of the matchers and index fields in the entity model.

The algorithm for the overall document "_score" takes the maximum score of each attribute and calculates the conflation probability of those scores. Let's run that calculation now using the attribute scores in this document.

First we must find the maximum scores of each matching attribute in the document:

Attribute Maximum Score
"city" 0.5463125
"email" 0.95
"last_name" 0.6389374999999999
"phone" 0.8241875
"state" 0.5125
"street" 0.7315624999999999

Then we will calculate the conflation probability of those scores:

(0.5463125 * 0.95 * 0.6389374999999999 * 0.8241875 * 0.5125 * 0.7315624999999999) / ((0.5463125 * 0.95 * 0.6389374999999999 * 0.8241875 * 0.5125 * 0.7315624999999999) + ((1 - 0.5463125) * (1 - 0.95) * (1 - 0.6389374999999999) * (1 - 0.8241875) * (1 - 0.5125) * (1 - 0.7315624999999999)))

This yields the overall document "_score":

0.9981643732697082

Conclusion

You learned how to score documents in the results of a resolution job, and how to analyze the explanation of those scores. This is a powerful tool for adjudicating the quality of the results of entity resolution.

 


Continue Reading

Advanced Usage Matcher Parameters
© 2018 - 2024 Dave Moore.
Licensed under the Apache License, Version 2.0.
Elasticsearch is a trademark of Elasticsearch BV.
This website uses Google Analytics.